Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Med Chem ; 67(6): 4998-5010, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38458970

RESUMO

Glucose-dependent insulinotropic peptide (GIP) is a 42-amino acid peptide hormone that regulates postprandial glucose levels. GIP binds to its cognate receptor, GIPR, and mediates metabolic physiology by improved insulin sensitivity, ß-cell proliferation, increased energy consumption, and stimulated glucagon secretion. Dipeptidyl peptidase-4 (DPP4) catalyzes the rapid inactivation of GIP within 6 min in vivo. Here, we report a molecular platform for the design of GIP analogues that are refractory to DPP4 action and exhibit differential activation of the receptor, thus offering potentially hundreds of GIP-based compounds to fine-tune pharmacology. The lead compound from our studies, which harbored a combination of N-terminal alkylation and side-chain lipidation, was equipotent and retained full efficacy at GIPR as the native peptide, while being completely refractory toward DPP4, and was resistant to trypsin. The GIP analogue identified from these studies was further evaluated in vivo and is one of the longest-acting GIPR agonists to date.


Assuntos
Polipeptídeo Inibidor Gástrico , Receptores dos Hormônios Gastrointestinais , Polipeptídeo Inibidor Gástrico/farmacologia , Polipeptídeo Inibidor Gástrico/química , Polipeptídeo Inibidor Gástrico/metabolismo , Insulina/metabolismo , Dipeptidil Peptidase 4/metabolismo , Peptídeo Hidrolases , Peptídeos , Endopeptidases , Receptores dos Hormônios Gastrointestinais/agonistas , Receptores dos Hormônios Gastrointestinais/metabolismo
2.
Acta Neuropathol ; 147(1): 9, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175301

RESUMO

Nuclear clearance and cytoplasmic accumulations of the RNA-binding protein TDP-43 are pathological hallmarks in almost all patients with amyotrophic lateral sclerosis (ALS) and up to 50% of patients with frontotemporal dementia (FTD) and Alzheimer's disease. In Alzheimer's disease, TDP-43 pathology is predominantly observed in the limbic system and correlates with cognitive decline and reduced hippocampal volume. Disruption of nuclear TDP-43 function leads to abnormal RNA splicing and incorporation of erroneous cryptic exons in numerous transcripts including Stathmin-2 (STMN2, also known as SCG10) and UNC13A, recently reported in tissues from patients with ALS and FTD. Here, we identify both STMN2 and UNC13A cryptic exons in Alzheimer's disease patients, that correlate with TDP-43 pathology burden, but not with amyloid-ß or tau deposits. We also demonstrate that processing of the STMN2 pre-mRNA is more sensitive to TDP-43 loss of function than UNC13A. In addition, full-length RNAs encoding STMN2 and UNC13A are suppressed in large RNA-seq datasets generated from Alzheimer's disease post-mortem brain tissue. Collectively, these results open exciting new avenues to use STMN2 and UNC13A as potential therapeutic targets in a broad range of neurodegenerative conditions with TDP-43 proteinopathy including Alzheimer's disease.


Assuntos
Doença de Alzheimer , Esclerose Amiotrófica Lateral , Demência Frontotemporal , Doença de Pick , Humanos , Doença de Alzheimer/genética , Proteínas de Ligação a DNA/genética , Splicing de RNA , RNA Mensageiro/genética , Estatmina/genética
3.
ACS Cent Sci ; 7(3): 454-466, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33791428

RESUMO

The gut-derived incretin hormone, glucagon-like peptide-1 (GLP1), plays an important physiological role in attenuating post-prandial blood glucose excursions in part by amplifying pancreatic insulin secretion. Native GLP1 is rapidly degraded by the serine protease, dipeptidyl peptidase-4 (DPP4); however, enzyme-resistant analogues of this 30-amino-acid peptide provide an effective therapy for type 2 diabetes (T2D) and can curb obesity via complementary functions in the brain. In addition to its medical relevance, the incretin system provides a fertile arena for exploring how to better separate agonist function at cognate receptors versus susceptibility of peptides to DPP4-induced degradation. We have discovered that novel chemical decorations can make GLP1 and its analogues completely DPP4 resistant while fully preserving GLP1 receptor activity. This strategy is also applicable to other therapeutic ligands, namely, glucose-dependent insulinotropic polypeptide (GIP), glucagon, and glucagon-like peptide-2 (GLP2), targeting the secretin family of receptors. The versatility of the approach offers hundreds of active compounds based on any template that target these receptors. These observations should allow for rapid optimization of pharmacological properties and because the appendages are in a position crucial to receptor stimulation, they proffer the possibility of conferring "biased" signaling and in turn minimizing side effects.

4.
Muscle Nerve ; 63(6): 928-940, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33651408

RESUMO

INTRODUCTION: RNA-binding proteins (RBPs) play an important role in skeletal muscle development and disease by regulating RNA splicing. In myotonic dystrophy type 1 (DM1), the RBP MBNL1 (muscleblind-like) is sequestered by toxic CUG repeats, leading to missplicing of MBNL1 targets. Mounting evidence from the literature has implicated other factors in the pathogenesis of DM1. Herein we sought to evaluate the functional role of the splicing factor hnRNP L in normal and DM1 muscle cells. METHODS: Co-immunoprecipitation assays using hnRNPL and MBNL1 expression constructs and splicing profiling in normal and DM1 muscle cell lines were performed. Zebrafish morpholinos targeting hnrpl and hnrnpl2 were injected into one-cell zebrafish for developmental and muscle analysis. In human myoblasts downregulation of hnRNP L was achieved with shRNAi. Ascochlorin administration to DM1 myoblasts was performed and expression of the CUG repeats, DM1 splicing biomarkers, and hnRNP L expression levels were evaluated. RESULTS: Using DM1 patient myoblast cell lines we observed the formation of abnormal hnRNP L nuclear foci within and outside the expanded CUG repeats, suggesting a role for this factor in DM1 pathology. We showed that the antiviral and antitumorigenic isoprenoid compound ascochlorin increased MBNL1 and hnRNP L expression levels. Drug treatment of DM1 muscle cells with ascochlorin partially rescued missplicing of established early biomarkers of DM1 and improved the defective myotube formation displayed by DM1 muscle cells. DISCUSSION: Together, these studies revealed that hnRNP L can modulate DM1 pathologies and is a potential therapeutic target.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Desenvolvimento Muscular/genética , Mioblastos/metabolismo , Distrofia Miotônica/genética , Adulto , Animais , Linhagem Celular , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mioblastos/patologia , Distrofia Miotônica/metabolismo , Distrofia Miotônica/patologia , Peixe-Zebra
5.
J Pharmacol Exp Ther ; 360(1): 106-116, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27789680

RESUMO

The Cys-Cys chemokine receptor 6 (CCR6) is a well-established modulator of inflammation. Although several genetic associations have been identified between CCR6 polymorphisms and immune system disorders (e.g., rheumatoid arthritis and Crohn's disease), the pharmacological effects of naturally occurring missense mutations in this receptor have yet to be characterized. In this study, we initially assessed G protein-mediated signaling and observed that wild-type (WT) CCR6 exhibited ligand-independent activity. In addition, we found that the five most frequent CCR6 missense variants (A89T, A150V, R155W, G345S, and A369V) exhibited decreased basal and/or ligand induced Gαi protein signaling. To complement the study of these loss-of-function variants, we engineered a set of constitutively active CCR6 receptors. Selected mutations enhanced basal G protein-mediated signaling up to 3-fold relative to the WT value. Using a bioluminescence resonance energy transfer assay we investigated the ability of each naturally occurring and engineered CCR6 receptor mutant to recruit ß-arrestin. In contrast to G protein-mediated signaling, ß-arrestin mobilization was largely unperturbed by the naturally occurring loss-of-function CCR6 variants. Elevated recruitment of ß-arrestin was observed in one of the engineered constitutively active mutants (T98P). Our results demonstrate that point mutations in CCR6 can result in either a gain or loss of receptor function. These observations underscore the need to explore how CCR6 natural variants may influence immune cell physiology and human disease.


Assuntos
Mutação Puntual , Receptores CCR6/genética , Receptores CCR6/metabolismo , Bases de Dados Genéticas , Humanos , Transporte Proteico/genética , beta-Arrestinas/metabolismo
6.
BMC Dev Biol ; 16(1): 15, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27184815

RESUMO

BACKGROUND: Insect metamorphosis relies on temporal and spatial cues that are precisely controlled. Previous studies in Drosophila have shown that untimely activation of genes that are essential to metamorphosis results in growth defects, developmental delay and death. Multiple factors exist that safeguard these genes against dysregulated expression. The list of identified negative regulators that play such a role in Drosophila development continues to expand. RESULTS: By using RNAi transgene-induced gene silencing coupled to spatio/temporal assessment, we have unraveled an important role for the Drosophila dopamine 1-like receptor, Dop1R2, in development. We show that Dop1R2 knockdown leads to pre-adult lethality. In adults that escape death, abnormal wing expansion and/or melanization defects occur. Furthermore we show that salivary gland expression of this GPCR during the late larval/prepupal stage is essential for the flies to survive through adulthood. In addition to RNAi-induced effects, treatment of larvae with the high affinity D1-like receptor antagonist flupenthixol, also results in developmental arrest, and in morphological defects comparable to those seen in Dop1R2 RNAi flies. To examine the basis for pupal lethality in Dop1R2 RNAi flies, we carried out transcriptome analysis. These studies revealed up-regulation of genes that respond to ecdysone, regulate morphogenesis and/or modulate defense/immunity. CONCLUSION: Taken together our findings suggest a role for Dop1R2 in the repression of genes that coordinate metamorphosis. Premature release of this inhibition is not tolerated by the developing fly.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Metamorfose Biológica/genética , Receptores de Dopamina D1/genética , Animais , Animais Geneticamente Modificados , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica/métodos , Larva/genética , Larva/crescimento & desenvolvimento , Pupa/genética , Pupa/crescimento & desenvolvimento , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
J Pharmacol Exp Ther ; 356(2): 276-83, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26582731

RESUMO

The Mas-related G protein-coupled receptor X1 (MrgprX1) is a human seven transmembrane-domain protein with a putative role in nociception and pruritus. This receptor is expressed in dorsal root ganglion neurons and is activated by a variety of endogenous peptides, including bovine adrenal medulla peptide (BAM) and γ2-melanocyte-stimulating hormone (γ2-MSH). In the present work, we study how naturally occurring missense mutations alter the activity of MrgprX1. To characterize selected receptor variants, we initially used the endogenous peptide ligand BAM8-22. In addition, we generated and characterized a panel of novel recombinant and synthetic peptide ligands. Our studies identified a mutation in the second intracellular loop of MrgprX1, R131S, that causes a decrease in both ligand-mediated and constitutive signaling. Another mutation in this region, H133R, results in a gain of function phenotype reflected by an increase in ligand-mediated signaling. Using epitope-tagged variants, we determined that the alterations in basal and ligand-mediated signaling were not explained by changes in receptor expression levels. Our results demonstrate that naturally occurring mutations can alter the pharmacology of MrgprX1. This study provides a theoretical basis for exploring whether MrgprX1 variability underlies differences in somatosensation within human populations.


Assuntos
Variação Genética/genética , Mutação de Sentido Incorreto/genética , Receptores Acoplados a Proteínas G/genética , Células HEK293 , Humanos , Ligantes , Receptores Acoplados a Proteínas G/metabolismo
8.
Adv Funct Mater ; 24(4): 472-479, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25419210

RESUMO

The goals of the present study are to establish an in vitro co-culture model of osteoblast and osteoclast function and to quantify the resulting bone remodeling. The bone is tissue engineered using well-defined silk protein biomaterials in 2D and 3D formats in combination with human cells expressing tethered agonists for selected G protein-coupled receptors (GPCRs). The tethered constructs are introduced with the objective of triggering sustained and localized GPCR signaling. The cell-modified biomaterial surfaces are reconstructed from SEM images into 3D models using image processing for quantitative measurement of surface characteristics. Parathyroid hormone (PTH) and glucose-dependent insulinotropic peptide (GIP) are selected because of their roles in bone remodeling for expression in tethered format on bone marrow derived human mesenchymal stem cells (hMSCs). Increased calcium deposition and increased surface roughness are found in 3D digital surface models constructed from SEM images of silk protein films remodeled by the co-cultures containing the tethered PTH, and decreased surface roughness is found for the films remodeled by the tethered GIP co-cultures. Increased surface roughness is not found in monocultures of hMSCs expressing tethered PTH, suggesting that osteoclast-osteoblast interactions in the presence of PTH signaling are responsible for the increased mineralization. These data point towards the design of in vitro bone models in which osteoblast-osteoclast interactions are mimicked for a better understanding of bone remodeling.

9.
PLoS One ; 9(11): e112123, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25409310

RESUMO

One hallmark of obesity is adipocyte hypertrophy and hyperplasia. To gain novel insights into adipose biology and therapeutics, there is a pressing need for a robust, rapid, and informative cell model of adipocyte differentiation for potential RNAi and drug screens. Current models are prohibitive for drug and RNAi screens due to a slow differentiation time course and resistance to transfection. We asked if we could create a rapid, robust model of adipogenesis to potentially enable rapid functional and obesity therapeutic screens. We generated the clonal population OP9-K, which differentiates rapidly and reproducibly, and displays classic adipocyte morphology: rounded cell shape, lipid accumulation, and coalescence of lipids into a large droplet. We further validate the OP9-K cells as an adipocyte model system by microarray analysis of the differentiating transcriptome. OP9-K differentiates via known adipogenic pathways, involving the transcriptional activation and repression of common adipose markers Plin1, Gata2, C/Ebpα and C/Ebpß and biological pathways, such as lipid metabolism, PPARγ signaling, and osteogenesis. We implemented a method to quantify lipid accumulation using automated microscopy and tested the ability of our model to detect alterations in lipid accumulation by reducing levels of the known master adipogenic regulator Pparγ. We further utilized our model to query the effects of a novel obesity therapeutic target, the transcription factor SPI1. We determine that reduction in levels of Spi1 leads to an increase in lipid accumulation. We demonstrate rapid, robust differentiation and efficient transfectability of the OP9-K cell model of adipogenesis. Together with our microscopy based lipid accumulation assay, adipogenesis assays can be achieved in just four days' time. The results of this study can contribute to the development of rapid screens with the potential to deepen our understanding of adipose biology and efficiently test obesity therapeutics.


Assuntos
Adipócitos/citologia , Adipogenia , Modelos Biológicos , Adipogenia/efeitos dos fármacos , Animais , Linhagem Celular , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo
10.
PLoS One ; 9(11): e110502, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25391026

RESUMO

Novel strategies are needed to expedite the generation and optimization of peptide probes targeting G protein-coupled receptors (GPCRs). We have previously shown that membrane tethered ligands (MTLs), recombinant proteins comprised of a membrane anchor, an extracellular linker, and a peptide ligand can be used to identify targeted receptor modulators. Although MTLs provide a useful tool to identify and/or modify functionally active peptides, a major limitation of this strategy is the reliance on recombinant protein expression. We now report the generation and pharmacological characterization of prototype peptide-linker-lipid conjugates, synthetic membrane anchored ligands (SMALs), which are designed as mimics of corresponding MTLs. In this study, we systematically compare the activity of selected peptides as MTLs versus SMALs. As prototypes, we focused on the precursor proteins of mature Substance P (SubP) and Cholecystokinin 4 (CCK4), specifically non-amidated SubP (SubP-COOH) and glycine extended CCK4 (CCK4-Gly-COOH). As low affinity soluble peptides these ligands each presented a challenging test case for assessment of MTL/SMAL technology. For each ligand, MTLs and corresponding SMALs showed agonist activity and comparable subtype selectivity. In addition, our results illustrate that membrane anchoring increases ligand potency. Furthermore, both MTL and SMAL induced signaling can be blocked by specific non-peptide antagonists suggesting that the anchored constructs may be orthosteric agonists. In conclusion, MTLs offer a streamlined approach for identifying low activity peptides which can be readily converted to higher potency SMALs. The ability to recapitulate MTL activity with SMALs extends the utility of anchored peptides as probes of GPCR function.


Assuntos
Peptídeos/química , Receptores Acoplados a Proteínas G/química , Glicina/química , Células HEK293 , Humanos , Ligantes , Piperidinas/química , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Receptores da Neurocinina-1/química , Proteínas Recombinantes/química , Transdução de Sinais , Substância P/química , Tetragastrina/química
11.
J Exp Biol ; 217(Pt 22): 4091-8, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25278473

RESUMO

Bursicon is a hormone that modulates wing expansion, cuticle hardening and melanization in Drosophila melanogaster. Bursicon activity is mediated through its cognate G protein-coupled receptor (GPCR), rickets. We have developed a membrane-tethered bursicon construct that enables spatial modulation of rickets-mediated physiology in transgenic flies. Ubiquitous expression of tethered bursicon throughout development results in arrest at the pupal stage. The few organisms that eclose fail to undergo wing expansion. These phenotypes suggest that expression of tethered bursicon inhibits rickets-mediated function. Consistent with this hypothesis, we show in vitro that sustained stimulation of rickets by tethered bursicon leads to receptor desensitization. Furthermore, tissue-specific expression of the tethered bursicon inhibitor unraveled a critical role for rickets in a subset of adult muscles. Taken together, our findings highlight the utility of membrane-tethered inhibitors as important genetic/pharmacological tools to dissect the tissue-specific roles of GPCRs in vivo.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Hormônios de Invertebrado/metabolismo , Hormônios de Invertebrado/fisiologia , Metamorfose Biológica/fisiologia , Músculos/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Hormônios de Inseto/metabolismo
12.
J Biol Chem ; 289(19): 13385-96, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24659779

RESUMO

The chemerin receptor (CMKLR1) is a G protein-coupled receptor found on select immune, epithelial, and dorsal root ganglion/spinal cord neuronal cells. CMKLR1 is primarily coupled to the inhibitory G protein, Gαi, and has been shown to modulate the resolution of inflammation and neuropathic pain. CMKLR1 is activated by both lipid and peptide agonists, resolvin E1 and chemerin, respectively. Notably, these ligands have short half-lives. To expedite the development of long acting, stable chemerin analogs as candidate therapeutics, we used membrane-tethered ligand technology. Membrane-tethered ligands are recombinant proteins comprised of an extracellular peptide ligand, a linker sequence, and an anchoring transmembrane domain. Using this technology, we established that a 9-amino acid-tethered chemerin fragment (amino acids 149-157) activates both mouse and human CMKLR1 with efficacy exceeding that of the full-length peptide (amino acids 21-157). To enable in vivo delivery of a corresponding soluble membrane anchored ligand, we generated lipidated analogs of the 9-amino acid fragment. Pharmacological assessment revealed high potency and wash resistance (an index of membrane anchoring). When tested in vivo, a chemerin SMAL decreased allergic airway inflammation and attenuated neuropathic pain in mice. This compound provides a prototype membrane-anchored peptide for the treatment of inflammatory disease. A parallel approach may be applied to developing therapeutics targeting other peptide hormone G protein-coupled receptors.


Assuntos
Asma/tratamento farmacológico , Quimiocinas/farmacologia , Fatores Quimiotáticos/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Neuralgia/tratamento farmacológico , Peptídeos/farmacologia , Receptores de Quimiocinas/agonistas , Receptores Acoplados a Proteínas G/agonistas , Animais , Asma/genética , Asma/metabolismo , Quimiocinas/química , Quimiocinas/genética , Fatores Quimiotáticos/química , Fatores Quimiotáticos/genética , Células HEK293 , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Neuralgia/genética , Neuralgia/metabolismo , Peptídeos/química , Peptídeos/genética , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
13.
FEBS J ; 280(23): 6097-113, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24102982

RESUMO

Mammalian muscle cell differentiation is a complex process of multiple steps for which many of the factors involved have not yet been defined. In a screen to identify the regulators of myogenic cell fusion, we found that the gene for G-protein coupled receptor 56 (GPR56) was transiently up-regulated during the early fusion of human myoblasts. Human mutations in the gene for GPR56 cause the disease bilateral frontoparietal polymicrogyria; however, the consequences of receptor dysfunction on muscle development have not been explored. Using knockout mice, we defined the role of GPR56 in skeletal muscle. GPR56(-/-) myoblasts have decreased fusion and smaller myotube sizes in culture. In addition, a loss of GPR56 expression in muscle cells results in decreases or delays in the expression of myogenic differentiation 1, myogenin and nuclear factor of activated T-cell (NFAT)c2. Our data suggest that these abnormalities result from decreased GPR56-mediated serum response element and NFAT signalling. Despite these changes, no overt differences in phenotype were identified in the muscle of GPR56 knockout mice, which presented only a mild but statistically significant elevation of serum creatine kinase compared to wild-type. In agreement with these findings, clinical data from 13 bilateral frontoparietal polymicrogyria patients revealed mild serum creatine kinase increase in only two patients. In summary, targeted disruption of GPR56 in mice results in myoblast abnormalities. The absence of a severe muscle phenotype in GPR56 knockout mice and human patients suggests that other factors may compensate for the lack of this G-protein coupled receptor during muscle development and that the motor delay observed in these patients is likely not a result of primary muscle abnormalities.


Assuntos
Fusão Celular , Malformações do Desenvolvimento Cortical/patologia , Desenvolvimento Muscular/fisiologia , Mioblastos/citologia , Fatores de Transcrição NFATC/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Elemento de Resposta Sérica/genética , Animais , Western Blotting , Comunicação Celular , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Técnicas Imunoenzimáticas , Luciferases/metabolismo , Masculino , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/metabolismo , Camundongos , Camundongos Knockout , Proteína MyoD/genética , Proteína MyoD/metabolismo , Mioblastos/metabolismo , Miogenina/genética , Miogenina/metabolismo , Fatores de Transcrição NFATC/antagonistas & inibidores , Fatores de Transcrição NFATC/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
14.
Mol Pharmacol ; 83(4): 814-21, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23340494

RESUMO

The study of complex heterodimeric peptide ligands has been hampered by a paucity of pharmacological tools. To facilitate such investigations, we have explored the utility of membrane tethered ligands (MTLs). Feasibility of this recombinant approach was explored with a focus on Drosophila bursicon, a heterodimeric cystine-knot protein that activates the G protein-coupled receptor rickets (rk). Rk/bursicon signaling is an evolutionarily conserved pathway in insects required for wing expansion, cuticle hardening, and melanization during development. We initially engineered two distinct MTL constructs, each composed of a type II transmembrane domain, a peptide linker, and a C terminal extracellular ligand that corresponded to either the α or ß bursicon subunit. Coexpression of the two complementary bursicon MTLs triggered rk-mediated signaling in vitro. We were then able to generate functionally active bursicon MTLs in which the two subunits were fused into a single heterodimeric peptide, oriented as either α-ß or ß-α. Carboxy-terminal deletion of 32 amino acids in the ß-α MTL construct resulted in loss of agonist activity. Coexpression of this construct with rk inhibited receptor-mediated signaling by soluble bursicon. We have thus generated membrane-anchored bursicon constructs that can activate or inhibit rk signaling. These probes can be used in future studies to explore the tissue and/or developmental stage-dependent effects of bursicon in the genetically tractable Drosophila model organism. In addition, our success in generating functionally diverse bursicon MTLs offers promise that such technology can be broadly applied to other complex ligands, including the family of mammalian cystine-knot proteins.


Assuntos
Proteínas de Drosophila/fisiologia , Hormônios de Invertebrado/fisiologia , Multimerização Proteica , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células HEK293 , Humanos , Hormônios de Invertebrado/química , Hormônios de Invertebrado/genética , Dados de Sequência Molecular , Ligação Proteica/genética , Multimerização Proteica/genética , Receptores Citoplasmáticos e Nucleares/biossíntese , Receptores Citoplasmáticos e Nucleares/genética , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/genética
15.
J Lipid Res ; 54(3): 823-830, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23268337

RESUMO

The hydroxy-carboxylic acid receptor (HCA1) is a G protein-coupled receptor that is highly expressed on adipocytes and considered a potential target for the treatment of dyslipidemia. In the current study, we investigated the pharmacological properties of naturally occurring variants in this receptor (H43Q, A110V, S172L, and D253H). After transient expression of these receptors into human embryonic kidney 293 cells, basal and ligand-induced signaling were assessed using luciferase reporter gene assays. The A110V, S172L, and D253 variants showed reduced basal activity; the S172L mutant displayed a decrease in potency to the endogenous ligand L-lactate. Both the S172L and D253H variants also showed impaired cell surface expression, which may in part explain the reduced activity of these receptors. The impact of a loss in HCA1 function on lipid accumulation was investigated in the adipocyte cell line, OP9. In these cells, endogenous HCA1 transcript levels rapidly increased and reached maximal levels 3 days after the addition of differentiation media. Knockdown of HCA1 using siRNA resulted in an increase in lipid accumulation as assessed by quantification of Nile Red staining and TLC analysis. Our data suggest that lipid homeostasis may be altered in carriers of selected HCA1 missense variants.


Assuntos
Proteínas de Transporte/genética , Mutação de Sentido Incorreto/genética , Proteínas do Tecido Nervoso/genética , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Humanos , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , RNA Interferente Pequeno
16.
Obesity (Silver Spring) ; 20(8): 1675-82, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22307069

RESUMO

The importance of lifestyle intervention for the prevention and treatment of type 2 diabetes (T2D) has been underscored by the limited benefit of pharmacologic therapies. We sought to determine whether genetic variants that contribute to T2D risk modify the response of weight and waist circumference to an intensive lifestyle intervention (ILI) in patients with obesity and T2D. Look AHEAD (Action for Health in Diabetes) is a randomized clinical trial comparing an ILI with a control condition on the risk of cardiovascular disease in overweight adults with T2D. We analyzed 28 single-nucleotide polymorphisms (SNPs) at/near 17 T2D-susceptibility genes in 3,903 consented participants. We genetically characterized the cohort by assessing whether T2D-susceptibility loci were overrepresented compared with a nondiabetic community-based cohort (N = 1,016). We evaluated the association of individual variants and a composite genetic risk score (GRS) with anthropometric traits at baseline and after 1-year of intervention. Look AHEAD subjects carried more T2D-susceptibility alleles than the control population. At baseline, TCF7L2 risk alleles and the highest GRS were associated with lower BMI and waist circumference. Nominally significant genotype-by-intervention interactions were detected for 1-year change in waist circumference with JAZF1, MTNR1B, and IRS1, and BMI with JAZF1. Highest GRS was associated with a greater reduction in waist circumference at year 1, although the variance in change attributable to the GRS was small. This study shows that the genetic burden associated with T2D risk does not undermine the effect of lifestyle intervention and suggests the existence of additional genomic regions, distinct from the T2D-susceptibility loci, which may enhance or mitigate weight loss.


Assuntos
Diabetes Mellitus Tipo 2/genética , Loci Gênicos , Estilo de Vida , Obesidade/genética , Polimorfismo de Nucleotídeo Único , Redução de Peso/genética , Programas de Redução de Peso , Idoso , Alelos , Índice de Massa Corporal , Doenças Cardiovasculares/etiologia , Proteínas Correpressoras , Estudos de Coortes , Proteínas de Ligação a DNA , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/terapia , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Obesidade/complicações , Obesidade/terapia , Receptor MT1 de Melatonina/genética , Receptor MT2 de Melatonina , Risco , Fatores de Risco , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Circunferência da Cintura/genética
17.
PLoS One ; 6(9): e24693, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21935440

RESUMO

BACKGROUND: The glucose-dependent insulinotropic polypeptide (GIP) and the glucagon-like peptide-1 (GLP-1) receptors are considered complementary therapeutic targets for type 2 diabetes. Using recombinant membrane-tethered ligand (MTL) technology, the present study focused on defining optimized modulators of these receptors, as well as exploring how local anchoring influences soluble peptide function. METHODOLOGY/PRINCIPAL FINDINGS: Serial substitution of residue 7 in membrane-tethered GIP (tGIP) led to a wide range of activities at the GIP receptor, with [G(7)]tGIP showing enhanced efficacy compared to the wild type construct. In contrast, introduction of G(7) into the related ligands, tGLP-1 and tethered exendin-4 (tEXE4), did not affect signaling at the cognate GLP-1 receptor. Both soluble and tethered GIP and GLP-1 were selective activators of their respective receptors. Although soluble EXE4 is highly selective for the GLP-1 receptor, unexpectedly, tethered EXE4 was found to be a potent activator of both the GLP-1 and GIP receptors. Diverging from the pharmacological properties of soluble and tethered GIP, the newly identified GIP-R agonists, (i.e. [G(7)]tGIP and tEXE4) failed to trigger cognate receptor endocytosis. In an attempt to recapitulate the dual agonism observed with tEXE4, we conjugated soluble EXE4 to a lipid moiety. Not only did this soluble peptide activate both the GLP-1 and GIP receptors but, when added to receptor expressing cells, the activity persists despite serial washes. CONCLUSIONS: These findings suggest that conversion of a recombinant MTL to a soluble membrane anchored equivalent offers a means to prolong ligand function, as well as to design agonists that can simultaneously act on more than one therapeutic target.


Assuntos
Membrana Celular/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Exenatida , Polipeptídeo Inibidor Gástrico/farmacologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1 , Humanos , Incretinas/farmacologia , Microscopia Confocal , Peptídeos/farmacologia , Receptores de Glucagon/metabolismo , Peçonhas/farmacologia
18.
Eur J Endocrinol ; 165(2): 233-41, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21646290

RESUMO

BACKGROUND: A limited number of mutations in the GH secretagogue receptor gene (GHSR) have been described in patients with short stature. Objective To analyze GHSR in idiopathic short stature (ISS) children including a subgroup of constitutional delay of growth and puberty (CDGP) patients. SUBJECTS AND METHODS: The GHSR coding region was directly sequenced in 96 independent patients with ISS, 31 of them with CDGP, in 150 adults, and in 197 children with normal stature. The pharmacological consequences of GHSR non-synonymous variations were established using in vitro cell-based assays. RESULTS: Five different heterozygous point variations in GHSR were identified (c.-6 G>C, c.251G>T (p.Ser84Ile), c.505G>A (p.Ala169Thr), c.545 T>C (p.Val182Ala), and c.1072G>A (p.Ala358Thr)), all in patients with CDGP. Neither these allelic variants nor any other mutations were found in 694 alleles from controls. Functional studies revealed that two of these variations (p.Ser84Ile and p.Val182Ala) result in a decrease in basal activity that was in part explained by a reduction in cell surface expression. The p.Ser84Ile mutation was also associated with a defect in ghrelin potency. These mutations were identified in two female patients with CDGP (at the age of 13 years, their height SDS were -2.4 and -2.3). Both patients had normal progression of puberty and reached normal adult height (height SDS of -0.7 and -1.4) without treatment. CONCLUSION: This is the first report of GHSR mutations in patients with CDGP. Our data raise the intriguing possibility that abnormalities in ghrelin receptor function may influence the phenotype of individuals with CDGP.


Assuntos
Transtornos do Crescimento/genética , Mutação de Sentido Incorreto , Puberdade Tardia/genética , Receptores de Grelina/genética , Adolescente , Adulto , Constituição Corporal/genética , Constituição Corporal/fisiologia , Células Cultivadas , Criança , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Grelina/metabolismo , Humanos , Masculino , Modelos Biológicos , Mutação de Sentido Incorreto/fisiologia , Receptores de Grelina/metabolismo , Transfecção
19.
J Pharmacol Exp Ther ; 335(3): 799-806, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20833795

RESUMO

The melanin-concentrating hormone (MCH) receptor type 1 (MCHR1) is a seven-transmembrane domain protein that modulates orexigenic activity of MCH, the corresponding endogenous peptide agonist. MCH antagonists are being explored as a potential treatment for obesity. In the current study, we examined the pharmacological impact of 11 naturally occurring mutations in the human MCHR1. Wild-type and mutant receptors were transiently expressed in human embryonic kidney 293 cells. MCHR1-mediated, Gα(i)-dependent signaling was monitored by using luciferase reporter gene assays. Two mutants, R210H and P377S, failed to respond to MCH. Five other variants showed significant alterations in MCH efficacy, ranging from 44 to 142% of the wild-type value. At each of the MCH-responsive mutants, agonist potency and inhibition by (S)-methyl 3-((3-(4-(3-acetamidophenyl)piperidin-1-yl)propyl)carbamoyl)-4-(3,4-difluorophenyl)-6-(methoxymethyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (SNAP-7941), an established MCHR1 small-molecule antagonist, were similar to wild type. To explore the basis for inactivity of the R210H and P377S mutants, we examined expression levels of these receptors. Assessment by enzyme-linked immunosorbent assay revealed that cell surface expression of both nonfunctional receptors was comparable with wild type. Overnight treatment with SNAP-7941, followed by washout of antagonist, enhanced MCH induced signaling by the wild-type receptor and restored MCH responsiveness of the P377S but not the R210H variant. It is of note that the two loss-of-function mutants were identified in markedly underweight individuals, raising the possibility that a lean phenotype may be linked to deficient MCHR1 signaling. Formal association studies with larger cohorts are needed to explore the extent to which signaling-deficient MCHR1 variants influence the maintenance of body weight.


Assuntos
Hormônios Hipotalâmicos/farmacologia , Melaninas/farmacologia , Mutação de Sentido Incorreto/fisiologia , Hormônios Hipofisários/farmacologia , Polimorfismo de Nucleotídeo Único/fisiologia , Receptores de Somatostatina/agonistas , Receptores de Somatostatina/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Genes Reporter/genética , Células HEK293 , Humanos , Piperidinas/farmacologia , Pirimidinas/farmacologia , Receptores de Somatostatina/antagonistas & inibidores , Receptores de Somatostatina/metabolismo , Proteínas Recombinantes/agonistas , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Magreza/genética , Transfecção
20.
Mol Pharmacol ; 78(5): 837-45, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20702761

RESUMO

The µ-opioid receptor (MOR) plays an important role in modulating analgesia, feeding behavior, and a range of autonomic functions. In the current study, we investigated the degree to which 13 naturally occurring missense mutations affect the pharmacological properties of the human MOR. After expression of each receptor in human embryonic kidney 293 cells, signaling (Gα(i/o)-mediated) induced by peptide agonists was assessed using luciferase reporter gene assays. Multiple mutants (S66F, S147C, R260H, R265C, R265H, and S268P) show a significant reduction in agonist potency. At the N190K variant, agonist-mediated signaling was essentially absent. Enzyme-linked immunosorbent assay, microscopic analysis, and radioligand binding assays revealed that this mutant shows markedly reduced cell-surface expression, whereas all other receptor variants were expressed at normal levels. Surface expression of the N190K variant could be increased by incubation with the alkaloid agonist buprenorphine or with either naltrexone or naloxone, structurally related MOR antagonists. We were surprised to find that both putative antagonists, despite being inactive at the wild-type MOR, triggered a concentration-dependent increase in N190K receptor-mediated signaling. In contrast, peptidic ligands failed to promote expression or rescue function of the N190K mutant. Subsequent analysis of the N190K variant in an ethnically diverse cohort identified this isoform in a subgroup of African Americans. Taken together, our studies reveal that the N190K mutation leads to severe functional alterations and, in parallel, changes the response to established MOR ligands. The extent to which this mutation results in physiological abnormalities or affects drug sensitivity in selected populations (e.g., those with chronic pain or addiction) remains to be investigated.


Assuntos
Peptídeos/farmacologia , Receptores Opioides mu/agonistas , Negro ou Afro-Americano , Substituição de Aminoácidos , Linhagem Celular , HDL-Colesterol/sangue , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Feminino , Genes Reporter , Genótipo , Humanos , Luciferases/biossíntese , Luciferases/genética , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Naloxona/farmacologia , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Peptídeos Opioides/farmacologia , Polimorfismo de Nucleotídeo Único , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/genética , Transporte Proteico , Ensaio Radioligante , Receptores Opioides mu/biossíntese , Receptores Opioides mu/genética , Transdução de Sinais , População Branca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...